Knowledge Graphs – New Perspectives on Analytics

Ever since Google announced its Knowledge Graph solution in 2012 the paradigm has found its way into many real-world use cases, mostly in the analytics space. This presentation will cover what a Knowledge Graph is, how it is different and yet complementary and will look at vendors, products and standards.

Data Observability – What is it and why is it important?

This session by internationally acclaimed analyst Mike Ferguson looks at the emergence of Data Observability and looks at what it is about, what Data Observability can observe, vendors in the market and examples of what vendors are capturing about data.

Building an Enterprise Data Marketplace

This session looks at what a data marketplace is, how to build one and how you can use it to govern data sharing across the enterprise and beyond. It also looks at what is needed to operate a data marketplace and the trend to become a marketplace for both data and analytical products.

A Data Strategy for Becoming Data Driven

Data driven worden behelst meer dan de inzet van nieuwe tools en technologie. Het grijpt in op business modellen, processen en vooral datamanagement. Dit seminar door Nigel Turner schetst de praktische stappen die nodig zijn om een haalbare datastrategie en aanpak op te stellen.

Data Mesh & Fabric: The Data Quality Dependency

This session will briefly recap the main concepts and practices of Data Mesh and Data Fabric and consider their implications for Data Quality Management. Will the Mesh and Fabric make Data Quality easier or harder to get right? As a foundational data discipline how should Data Quality principles and practices evolve and adapt to meet the needs of these new trends? What new approaches and practices may be needed? What are the implications for Data Quality practitioners and other data management professionals working in other data disciplines such as Data Governance, Business Intelligence and Data Warehousing?

Profiting with Practical Supervised Machine Learning

Praktische halve dag over het inzetten van Supervised machine learning. Wanneer is juist deze vorm te prefereren boven Unsupervised of Deep Learning en hoe pak je dit concreet aan? Hoe pak je data preparation aan voor verschillende soorten modellen en hoe automatiseer je dat uiteindelijk. [Video introduction]

DataOps in de praktijk

DataOps is in de praktijk niet zo gewoon voor data & analytics als DevOps voor software engineering is. Bij DevOps zijn Ontwikkeling en Beheer samen verantwoordelijk om een systeem te ontwikkelen, in productie te brengen en beschikbaar te houden. Met als doel sneller leveren, wendbaarder zijn en maximale business value creëren. Dit is waar DataOps hetzelfde is als DevOps: we beogen dezelfde voordelen te behalen. Maar het ‘hoe’ verschilt aanzienlijk!